

MICROPOLAR FLUID TO MODEL 2D HEAT TRANSFER ENHANCEMENT IN NANOFUIDS

Adel Sarmiento^{1,3}, Adriano Cortes³, Daniel Garcia^{2,3}, Lisandro Dalcin³,
Nathan Collier³ and Victor M. Calo^{1,3,4}

¹ Applied Mathematics & Computational Science,
King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
adel.sarmientorodriguez@kaust.edu.sa

² Mechanical Engineering,
King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
daniel.garcalozano@kaust.edu.sa

³ Center for Numerical Porous Media (NumPor),
King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
adrimacortes@gmail.com, dalcinl@gmail.com, nathaniel.collier@gmail.com

⁴ Earth Science & Engineering,
King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
victor.calo@kaust.edu.sa

Key words: *Micropolar Fluids, Incompressible Flows, Nanofuids, Isogeometric Analysis, Divergence-conforming B-splines, Divergence Free.*

Micropolar fluids are a generalization of the Navier-Stokes equations of classical hydrodynamics [1, 2]. Taking into account effects of microstructures at the continuum scale, we discretize the system of equations coming from the conservation laws. We use divergence-conforming B-spline spaces for the discrete velocity-pressure fields pair, guaranteeing the inf-sup stability condition and a point-wise divergence free discrete velocity field [3, 4]. We tested our implementation using manufactured solutions obtaining optimal convergence rates. As test cases we used the heat-driven cavity problem [5] and also reproduce experimental results from literature.

REFERENCES

- [1] Eringen, A., *Simple Microfluids*. Journal of Mathematics and Mechanics, 1964.
- [2] Eringen, A., *Theory of Micropolar fluids*. Journal of Mathematics and Mechanics, 1966.
- [3] Evans, J.A., and Hughes, T.J.R., *Isogeometric Divergence-conforming B-splines for the Darcy-Stokes-Brinkman Equations*. ICES REPORT 12-03, The Institute for Computational Engineering and Sciences, January 2012.

- [4] Evans, J.A., and Hughes, T.J.R., *Isogeometric Divergence-conforming B-splines for the Steady Navier-Stokes Equations*. ICES REPORT 12-15, The Institute for Computational Engineering and Sciences, April 2012.
- [5] Bourantas, G.C. and Loukopoulos, V.C., *Modeling the natural convective flow of micropolar nanofluids*. International Journal of Heat and Mass Transfer. 68, 2014, pp. 3541.